(6x^3-5x^2-4x+3)/(x-1)

Simple and best practice solution for (6x^3-5x^2-4x+3)/(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x^3-5x^2-4x+3)/(x-1) equation:


D( x )

x-1 = 0

x-1 = 0

x-1 = 0

x-1 = 0 // + 1

x = 1

x in (-oo:1) U (1:+oo)

(6*x^3-(5*x^2)-(4*x)+3)/(x-1) = 0

(6*x^3-5*x^2-4*x+3)/(x-1) = 0

6*x^3-5*x^2-4*x+3 = 0

6*x^3-5*x^2-4*x+3 = 0

{ 1, -1, 3, -3 }

1

x = 1

6*x^3-5*x^2-4*x+3 = 0

1

x-1

6*x^2+x-3

6*x^3-5*x^2-4*x+3

x-1

6*x^2-6*x^3

x^2-4*x+3

x-x^2

3-3*x

3*x-3

0

6*x^2+x-3 = 0

DELTA = 1^2-(-3*4*6)

DELTA = 73

DELTA > 0

x = (73^(1/2)-1)/(2*6) or x = (-73^(1/2)-1)/(2*6)

x = (73^(1/2)-1)/12 or x = (-(73^(1/2)+1))/12

x in { (-(73^(1/2)+1))/12, (73^(1/2)-1)/12, 1}

(x+(73^(1/2)+1)/12)*(x-((73^(1/2)-1)/12))*(x-1) = 0

(x+(73^(1/2)+1)/12)*(x-((73^(1/2)-1)/12)) = 0

( x+(73^(1/2)+1)/12 )

x+(73^(1/2)+1)/12 = 0 // - (73^(1/2)+1)/12

x = -((73^(1/2)+1)/12)

( x-((73^(1/2)-1)/12) )

x-((73^(1/2)-1)/12) = 0 // + (73^(1/2)-1)/12

x = (73^(1/2)-1)/12

x in { -((73^(1/2)+1)/12), (73^(1/2)-1)/12 }

See similar equations:

| (5-y)(2y-7)=0 | | 2*15/4-6+15/4=6*15/4+9 | | 8(y+2)+y=2(y+2)+7 | | 23x-16=205 | | .67x=14 | | .75y-.5=7 | | (6x^3-5x^2-4x+3)/x-1 | | 9-2x-5-4x=7 | | 2(4x+3)=8x+6 | | 8y-1=4y+9 | | 0.25x+27=41 | | -0.572x=-8 | | -4(n+5)=8-3n | | 31n(2x)=15 | | (((6x-7)/(6x+6))+1)/(((6x-7)/(6x+6))-1) | | y=10/7*1-10 | | 6=5+5e^6x | | 44=5x-8-x | | 7(x-3)=8x+2 | | 5/12/10/36+1/2= | | 16b^7p^8-36b^5p^6+36b^3p^4/4b^3p | | -5*16+6/2-16= | | y=16x^2^(1/2) | | y=sqrt(16x^2) | | -8/6 | | .75x+.05(16-x)=.10(78) | | 10a+1=2a+1 | | -8x+7/7=11 | | -8x-7=11 | | 20-3(2x+4)=-2x | | (y+2)+1=4y | | 48=9+3 |

Equations solver categories